Search results for "FMN Reductase"

showing 6 items of 6 documents

The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions

2016

SPE EA BIOME IPM UB INRA; International audience; Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Rema…

0106 biological sciences0301 basic medicineSiderophoreAgronomieFMN ReductasePhysiologyIronArabidopsis[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil study[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySiderophoresPseudomonas fluorescensPlant Science[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyPseudomonas fluorescens01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundEthylene[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyGene Expression Regulation PlantArabidopsisGeneticsmedicineArabidopsis thalianaHomeostasisCation Transport Proteins2. Zero hungerPyoverdinebiologyIndoleacetic AcidsArabidopsis ProteinsScience des solsGene Expression ProfilingPseudomonasfood and beveragesArticlesEthylenesbiology.organism_classification030104 developmental biologychemistryFerricSalicylic AcidOligopeptidesBacteria010606 plant biology & botanymedicine.drugAbscisic Acid
researchProduct

Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.

2007

Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its inc…

0106 biological sciencesChlorophyll[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyFMN ReductasePhysiologyIronArabidopsisReductasePseudomonas fluorescens01 natural sciencesPlant Roots03 medical and health scienceschemistry.chemical_compoundFMN reductaseArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyChelationRELATION PLANTE-MICROORGANISMECation Transport ProteinsEdetic Acid030304 developmental biology0303 health sciencesPyoverdinebiologyArabidopsis ProteinsACLWild typeARABIDOPSIS THALIANAGeneral Medicinebiology.organism_classificationPlants Genetically ModifiedFerritinchemistryBiochemistryChlorophyllFerritinsbiology.proteinAgronomy and Crop ScienceOligopeptides010606 plant biology & botany
researchProduct

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

2013

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

0106 biological sciences[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyMESH : Azetidinecarboxylic AcidFMN ReductaseArabidopsis thalianaMutantArabidopsisGene ExpressionPlant Science01 natural sciencesMESH : Cation Transport ProteinsMESH : IronMESH : Arabidopsis ProteinsNicotianamine synthaseMESH : Plants Genetically Modifiedchemistry.chemical_compoundMESH : ArabidopsisGene Expression Regulation PlantGene expressionMESH: Genes PlantArabidopsis thalianaMESH : DNA BacterialHomeostasisMESH: ArabidopsisNicotianamineMESH: Stress PhysiologicalCation Transport ProteinsMESH : Adaptation PhysiologicalMESH : Cadmium2. Zero hungerchemistry.chemical_classification0303 health sciencesCadmiumMESH: IronbiologyGeneral MedicineIron DeficienciesPlants Genetically ModifiedAdaptation PhysiologicalMESH: Azetidinecarboxylic AcidMESH : PhenotypePhenotypeBiochemistryMESH: HomeostasisMESH : HomeostasisMESH : MutationAzetidinecarboxylic AcidCadmiumDNA BacterialMESH: Gene ExpressionMESH: MutationIronMESH: Cadmiumchemistry.chemical_elementMESH: FerritinsMESH: Arabidopsis ProteinsMESH: Alkyl and Aryl TransferasesGenes PlantMESH: PhenotypeNicotianamine synthase03 medical and health sciencesMESH: Cation Transport ProteinsStress PhysiologicalIron homeostasisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIron deficiency (plant disorder)MESH: Gene Expression Regulation PlantMESH : Genes PlantMESH : Alkyl and Aryl TransferasesMESH : Stress Physiological030304 developmental biologyMESH : FMN ReductaseAlkyl and Aryl TransferasesArabidopsis ProteinsIron deficiencyNitric oxideNicotianaminebiology.organism_classificationMESH: Adaptation PhysiologicalMESH: DNA BacterialMESH : Gene ExpressionEnzymechemistryMESH: FMN ReductaseMESH: Plants Genetically ModifiedFerritinsMutationbiology.proteinMESH : FerritinsAgronomy and Crop ScienceMESH : Gene Expression Regulation Plant010606 plant biology & botany
researchProduct

Ferric-reductase activities in Vibrio vulnificus biotypes 1 and 2.

1999

In this paper, the ferric-reductase activities of Vibrio vulnificus were investigated. This species comprises two biotypes pathogenic for humans and eels that are able to express different mechanisms for iron acquisition. All strains of both biotypes used in this study were able to reduce ferric citrate, irrespective of the iron levels in the growth medium. Some variation in the degree of reduction was observed among the strains, with the highest values corresponding to one acapsulated environmental strain of biotype 1. When cell fractions were tested, only those from periplasm and cytoplasm showed reductase activity whereas no activity was detected in membranes. Low temperatures inhibited …

CytoplasmTime FactorsFMN ReductaseIronVibrio vulnificusReductaseMicrobiologyFerric CompoundsMicrobiologychemistry.chemical_compoundBacterial ProteinsVibrionaceaeGeneticsAnimalsHumansNADH NADPH OxidoreductasesMolecular BiologyVibrioGrowth mediumEelsbiologyStrain (chemistry)Cell MembranePeriplasmic spacebiology.organism_classificationCulture MediachemistryBiochemistryCytoplasmPeriplasmbacteriaElectrophoresis Polyacrylamide GelBacteriaFEMS microbiology letters
researchProduct

Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver

2004

The metabolism of apigenin, a low estrogenic flavonoid phytochemical, was investigated in rat using liver models both in vitro (subcellular fractions) and ex vivo (isolated perfused liver). In vitro, phase I metabolism led to the formation of three monohydroxylated derivatives: luteolin which was the major metabolite (K(m) = 22.5 +/- 1.5 microM; V(max) = 5.605 +/- 0.090 nmol/min/mg protein, means +/- S.E.M.), scutellarein, and iso-scutellarein. These oxidative pathways were mediated by cytochrome P450 monooxygenases (P450s). The use of P450 inhibitors and inducers showed that CYP1A1, CYP2B, and CYP2E1 are involved. In vitro studies of phase II metabolism indicated that apigenin underwent co…

MaleFMN ReductaseMetabolite[SDV]Life Sciences [q-bio]Pharmaceutical ScienceIn Vitro TechniquesMethylation030226 pharmacology & pharmacyMass Spectrometry03 medical and health scienceschemistry.chemical_compoundGlucuronides0302 clinical medicineCytochrome P-450 Enzyme SystemAnimalsApigeninEnzyme InhibitorsRats WistarLuteolinBiotransformationChromatography High Pressure LiquidComputingMilieux_MISCELLANEOUS030304 developmental biologyFlavonoidsPharmacologySex Characteristics0303 health sciencesbiologySulfatesScutellareinCytochrome P450MonooxygenaseDiosmetinRats3. Good health[SDV] Life Sciences [q-bio]KineticsLiverBiochemistrychemistryApigeninbiology.proteinRATFemaleSpectrophotometry UltravioletLuteolinNADPDrug metabolismSubcellular Fractions
researchProduct

Semiquantitative bioluminescent assay of glutathione

1998

A novel technique has been developed for semiquantitative detection of glutathione (GSH) in small volumes of liquid samples. GSH is detected via enzymatic linkage to the NADP/NADPH + H+ redox system through glutathione reductase. Accumulated NADPH is measured via the bioluminescent FMN oxidoreductase bacterial luciferase reaction. A linear correlation is obtained between bioluminescence intensity of the luciferase reaction and the GSH content of the liquid sample. Possible applications of this procedure are discussed. © 1998 John Wiley & Sons, Ltd.

chemistry.chemical_classificationBioluminescent assayChemistryGlutathione reductaseBiophysicsGlutathioneRedoxchemistry.chemical_compoundEnzymeBiochemistryChemistry (miscellaneous)FMN reductaseBioluminescenceLuciferaseJournal of Bioluminescence and Chemiluminescence
researchProduct